
The ReAl Computer Architecture IDAACS 2007 1

http://www.realcomputerarchitecture.com

 The ReAl Computer Architecture

ReAl = Resource Algebra

• ReAl principles

• ReAl operators

• ReAl machines

• Related work

• Call to action

The ReAl Computer Architecture IDAACS 2007 2

http://www.realcomputerarchitecture.com

The ReAl Computer Architecture

ReAl = Resource Algebra

The architectural principles of contemporary computers had been invented

in the sixties, seventies and eighties. In those times hardware was scarce.

But now?

200 million transistors – and much more – should be used to try out

something ReAlly new . . .

Let's start with a radically different hypothesis – all we need will be

available in abundance:

• Hardware does not matter.

• Memory capacity does not matter.

• Hardware requirements for machine program generation do not matter.

Primary objectives of ReAl architecture design:

• To utilize the inherent parallelism in information processing operations

to the highest possible degree – limited only by the very nature of the

application problem and the available hardware.

• To provide interfaces between hardware and software that ensure

machine-independence and interchangeability.

The ReAl Computer Architecture IDAACS 2007 3

http://www.realcomputerarchitecture.com

The ReAl Computer Architecture

ReAl = Resource Algebra

What constitutes a computer architecture?

• a set of data structures D,

• a set of operations O,

• a mapping of C onto D.

CA = {D, O, MOD}

This is essentially an algebraic structure. Each instance of a data structure

needs some kind of hardware to be stored in, each operation needs a

hardware device to be executed onto. Without hardware, even the most

sophisticated software cannot be executed.

The basic hardware building blocks are called "resources."

Hence the name ReAl = Resource Algebra.

What is a resource?

Essentially a building block or functional unit, for example, an arithmetic/

logic unit (ALU), an address counter, or an addressable memory array.

Typically, a resource will be described by its register transfer level (RTL)

structure. Basic resources comprise input registers, combinational circuitry

and output registers.

The ReAl Computer Architecture IDAACS 2007 4

http://www.realcomputerarchitecture.com

The ReAl Computer Architecture

ReAl = Resource Algebra

RTL diagrams of resources show operand storage means, combinational

circuitry and result storage means. The storage means could be registers

or memory arrays, respectively (for example, to accommodate vectors or

character strings).

The ReAl Computer Architecture IDAACS 2007 5

http://www.realcomputerarchitecture.com

The ReAl Computer Architecture

ReAl = Resource Algebra

Resources can be implemented the hard or the soft way. Here are two

examples.

a) Hardware implementation.

b) When implemented by software, an appropriate storage area

accommodates the contents of the operand and result registers.

The functions of the combinational circuitry will be emulated by appropriate

programs (c) or described by net lists, Boolean equations or the like (d).

The ReAl Computer Architecture IDAACS 2007 6

http://www.realcomputerarchitecture.com

The ReAl Computer Architecture

ReAl = Resource Algebra

Inherent Parallelism

All resources belonging to some kind of ReAl machine can be thought to

belong to a set or pool.

The size of this pool is transfinite. The number of resources is restricted

only by the maximum value which can be represented by the largest

number format of the implementation (for example, more than 4 billion in

case of a 32-bit-machine).

Being able to request an arbitrary number of resources, the parallelism

inherent in an application program can be exploited up to the utmost

degree.

The ReAl Computer Architecture IDAACS 2007 7

http://www.realcomputerarchitecture.com

The ReAl Computer Architecture

ReAl = Resource Algebra

Efficiency of implementation (... of the application problem)

The universal computer is essentially nothing more than a makeshift

solution. It does not solve the application problem proper; it can only

execute comparatively simple instructions.

The true optimum solution would be a dedicated hardware whose machine

cycles are spent exclusively to compute the desired final results – neither

clock cycles nor memory bandwidth is wasted fetching instructions, loading

and storing intermediate results, entering subroutines and so on.

Such a dedicated machine is essentially an application-specific dataflow

machine. It has to be designed. Even if sophisticated design tools are used

(like silicon compilers), there is a division between development time and

run time.

ReAl machines should be true universal machines which can be morphed

into application-specific machines dynamically during runtime.

The ReAl Computer Architecture IDAACS 2007 8

http://www.realcomputerarchitecture.com

The ReAl Computer Architecture

ReAl = Resource Algebra

Our basic paradigm

When we want to do something, we will fetch an appropriate piece of

hardware out of a magazine (like a hammer to drive in a nail or a wrench

to fasten a nut) and use it to perform the information processing task to be

executed.

When we want to add two numbers together, we take an adder, when we

want to compare two values, we take a comparator and so on. A piece of

hardware which has done its duty will be returned to the magazine. We will

take as many tools as we need, e.g., 50 hammers if 50 nails are to be

driven in, or 50 adders if 50 pairs of numbers are to be added together.

Basic processing steps:

• Appropriate resources will be selected out of the resource pool.

• The resources will be fed with parameters.

• Then the processing operations will be initiated.

• Results will be stored in memory or written to I/O devices; intermediate

results will be forwarded to other resources.

• Further steps of parameter passing and assignment of results will be

executed until the processing task has been completed.

• Resources which are not longer needed will be returned to the resource

pool.

The ReAl Computer Architecture IDAACS 2007 9

http://www.realcomputerarchitecture.com

The ReAl Computer Architecture

ReAl = Resource Algebra

How a single resource is used – the basic computational model.

The ReAl Computer Architecture IDAACS 2007 10

http://www.realcomputerarchitecture.com

The ReAl Computer Architecture

ReAl = Resource Algebra

Concatenation

The ReAl computational model provides for connecting resources

according to the data flow diagrams of the respective processing

operations and for disconnecting these connections. Such connections will

be referred to as concatenations. Once a concatenation has been

established, the steps of parameter passing, initiation of operations and

assignment of results will be performed automatically; there is no need to

control each single processing step by separate instructions.

Some example data flow diagrams.

The ReAl Computer Architecture IDAACS 2007 11

http://www.realcomputerarchitecture.com

The ReAl Computer Architecture

ReAl = Resource Algebra

Operators – the ReAl instruction set

The processing steps are controlled by stored instructions. The abstract

(machine-independent) instructions are called operators. There are at least

eight basic types:

1. Select resources: s-operator.

2. Establish concatenations between resources: c-operator.

3. Feed resources with operands (parameter passing): p-operator.

4. Initiate the information processing operations: y-operator (yield).

5. Move data between resources: l-operator (link).

6. Assign results: a-operator.

7. Disconnect concatenations: d-operator.

8. Return resources to the resource pool: r-operator.

Operators describe the basic steps of information processing. Machine-

independent ReAl programs are sequences of operators. To be stored and

executed, operators have to be encoded. Basically, there are three types

of ReAl codes: textcodes, bytecodes, and fixed-format machine codes.

The ReAl Computer Architecture IDAACS 2007 12

http://www.realcomputerarchitecture.com

The ReAl Computer Architecture

ReAl = Resource Algebra

A basic example

The application problem: X := (A + B) • (C + D).

This task requires three resources; two adders (ADD) and one multiplier

(MULT). The diagram shows the ordinal numbers of the resources and their

parameters.

The ReAl Computer Architecture IDAACS 2007 13

http://www.realcomputerarchitecture.com

The ReAl Computer Architecture

ReAl = Resource Algebra

The program listing

Left: Program written in a step-by-step notation.

Right: Some code formats allow for longer argument lists, so more activities

can be initiated by one operator.

s (ADD
s (ADD)
s (MULT)
p (A => 1.1)
p (B => 1.2)
p (C => 2.1)
p (D => 2.2)
y (1)
y (2)
l (1.3 => 3.1)
l (2.3 => 3.2)
r (1)
r (2)
y (3)
a (3. 3 => X)
r (3)

s (ADD, ADD, MULT)
p (A => 1.1, B => 1.2, C => 2.1, D => 2.2)
y (1, 2)
l (1.3 => 3.1, 2.3 => 3.2)
r (1, 2)
y (3)
a (3.3 => X)
r (3)

The ReAl Computer Architecture IDAACS 2007 14

http://www.realcomputerarchitecture.com

The ReAl Computer Architecture

ReAl = Resource Algebra

The basic example solved by concatenating the resources

The resources are concatenated according to the dataflow graph of the

application problem.

s (ADD, ADD, MULT)
c (1.3 => 3.1, 2.3 => 3.2)
p (A => 1.1, B => 1.2, C => 2.1, D => 2.2)
a (3.3 => X)
r (1, 2, 3)

The ReAl Computer Architecture IDAACS 2007 15

http://www.realcomputerarchitecture.com

The ReAl Computer Architecture

ReAl = Resource Algebra

ReAl machines

... comprise processing resources, platform resources, and storage means.

A processing resource is a functional unit – more than a logic block of an

FPGA and less than a complete processor. An arithmetic/logic unit (ALU)

with some addressing, control, and storage means may serve as a typical

example.

Resources in ReAl machines are less complex than the operation units of

the contemporary high-performance processors. Above all, provisions for

internal pipelining will not be necessary. Instead, effects of operation

overlapping will show up as a consequence of concatenation and of

employing multiple resources simultaneously.

Platform resources are provided to fetch the instructions from memory. The

platform comprises the resources that are required in order to initiate and

maintain operation of the system. Basic platforms contain an instruction

counter and provisions for branching and for calling of subroutines.

In more advanced ReAl machines, the platform will be used merely for

initialization, administration of the resources and the like. Decisions,

conditional execution, loop control and so on will be delegated essentially

to the processing resources.

The ReAl Computer Architecture IDAACS 2007 16

http://www.realcomputerarchitecture.com

The ReAl Computer Architecture

ReAl = Resource Algebra

A typical – somewhat more advanced – universal processing resource.

This platform supports instruction addressing, conditional branching and
C/Unix-like function calls.

The ReAl Computer Architecture IDAACS 2007 17

http://www.realcomputerarchitecture.com

The ReAl Computer Architecture

ReAl = Resource Algebra

A very basic ReAl machine.

A ReAl machine comprising multiple bus systems.

The ReAl Computer Architecture IDAACS 2007 18

http://www.realcomputerarchitecture.com

The ReAl Computer Architecture

ReAl = Resource Algebra

A ReAl machine based on switched interconnections.

The ReAl Computer Architecture IDAACS 2007 19

http://www.realcomputerarchitecture.com

The ReAl Computer Architecture

ReAl = Resource Algebra

Resource cells in ReAl FPGA circuits.
Each cell is hard wired. It comprises an arithmetic/logic unit, addressing
means and some memory capacity (for example, enough to hold the
variables of a typical C-like function or a few floating point vectors).

The ReAl Computer Architecture IDAACS 2007 20

http://www.realcomputerarchitecture.com

The ReAl Computer Architecture

ReAl = Resource Algebra

Resources should be able to work autonomously. Instruction fetch cycles

as well as load and store cycles have to be avoided whenever possible.

In an ideal machine, only data related to the solution of the application

problem would be fetched and stored.

In a ReAl machine, instructions will set up configurations of resources

which corresponds to parts of the dataflow graph of the application problem

and leave the execution of operations and the transport of intermediate

data to the processing resources. Each resource knows what it has to do

(set up by s-operators), which parameters are to be processed and where

the results are to be delivered (set up by p- and c-operators).

Some potential candidates for partial dataflow graphs:

• Basic blocks (linear sequences of instructions between jumps or

subroutine calls).

• Innermost loops.

• Conditional statements.

• Subroutines (for example, C-like functions).

The ReAl Computer Architecture IDAACS 2007 21

http://www.realcomputerarchitecture.com

The ReAl Computer Architecture

ReAl = Resource Algebra

Resource configurations

The interaction of resources concatenated arbitrarily seems to require

complex and expensive interconnection networks. Furthermore, one may

suspect that the communications overhead may cost more machine cycles

than the conventional instruction fetches etc. we try to avoid. We assume

that these problems can be circumvented by restricting the hardware

topology to a few essential configurations and by coalescing processing

resources and memory.

Essential resource topologies

We assume that only two configurations need to be supported in hardware:

1. Independent resources operating in parallel.

2. Inverted binary trees.

All other topologies could be emulated (virtual connections).

The evaluation of nested expressions (including function calls) can be

mapped well onto inverted tree structures. This is also true for operations

which compute a single result from multiple data (like SAXPY or SAD).

Within such a tree, the data paths between the resources are simple (and

short) point-to-point connections.

The ReAl Computer Architecture IDAACS 2007 22

http://www.realcomputerarchitecture.com

The ReAl Computer Architecture

ReAl = Resource Algebra

Resources concatenated to an inverted binary tree.
To support emulation of a function call stack, an additional stack cache
has been provided.

The ReAl Computer Architecture IDAACS 2007 23

http://www.realcomputerarchitecture.com

The ReAl Computer Architecture

ReAl = Resource Algebra

Inverted trees with associated stack caches fit well between the bus
structures of a ReAl FPGA.

The ReAl Computer Architecture IDAACS 2007 24

http://www.realcomputerarchitecture.com

The ReAl Computer Architecture

ReAl = Resource Algebra

ReAl and programming languages

Fundamentally, ReAl programs can be likened to manufacturing or

machining instructions* – ReAl programming means just to plan ahead.

Which manufacturing steps are to be executed? Which tools and machines

are necessary? Which part has to be supplied to which machine in the

course of time? No engineer would begin designing cars, ships and so on

writing down instructions of this kind. Analogously, a programmer will not

use a ReAl text code for jotting down his programming ideas.

Instead, ReAl programs will be generated automatically from source

programs written in higher-level languages. Machine-independent ReAl

codes can be seen as intermediate languages, similar to the well-known

Java byte code. However, the goal is not code compactness but to

describe precisely the inherent parallelism and essential intricacies of

program operation. In this respect, ReAl may be better compared to

Postscript than to Java.

*: Something like "To manufacture this gearbox, we will need three lathes, five milling

machines and so on. Part No. 33 will be machined on lathe No. 2 and then finished

on grinding machine No. 6."

The ReAl Computer Architecture IDAACS 2007 25

http://www.realcomputerarchitecture.com

The ReAl Computer Architecture

ReAl = Resource Algebra

Java, JVM ReAl

• Code compactness

(bytecode)

• Developed for small

programs (applets)

• Executable on thin

machines

• Programs to be

downloaded via internet

• JVM is a conventional

stack machine, hence its

operations are inherently

sequential

• JVM bytecode describes

one operation at on time,

hence inherent parallelism

is to be detected during

runtime

• To make best possible use of hardware

• Developed for large and computing-

intensive programs (graphics, equation

solving, simulation, data bases, neural

networks, AI)

• There will always be enough hardware.

Memory capacity and code size are

irrelevant

• Executable on machines which can be built

with future IC technology (dozens or even

hundreds of operation units on one

integrated circuit)

• ReAl code describes completely the

inherent parallelism of program operation

• Creation of virtual special processors which

correspond to the dataflow graph of the

application problem

• Inherent parallelism will be detected not

during runtime but in statu nascendi (in

other words, by examination of the

programming intentions)

• A sufficiently standardized ReAl instruction

set is a unified machine language, which

can describe hardware as well as software

The ReAl Computer Architecture IDAACS 2007 26

http://www.realcomputerarchitecture.com

The ReAl Computer Architecture

ReAl = Resource Algebra

Superscalar and ReAl Architectures

The multiple operation units in superscalar machines are controlled by

appropriately formatted instructions (explicit instruction level parallelism)

or by a speculation mechanism. This mechanism tries to emulate some

kind of dataflow machine, executing instructions according to the

availability of the data to be processed.

Simplified block diagram of a typical superscalar processor.

This type of parallel processing is essentially a trial and error approach.

Inherent parallelism can be detected only within short instruction

sequences. Since in case of a conflict the execution of the instruction must

be repeated, the processing performance will drop. Moreover, because of

the controlling and monitoring overhead, typically only elementary

instructions will be supported this way. Instructions with complex functions

are often executed serially. The complexity of the control circuitry is

comparatively high.

The ReAl Computer Architecture IDAACS 2007 27

http://www.realcomputerarchitecture.com

The ReAl Computer Architecture

ReAl = Resource Algebra

A superscalar processor in more detail (source: Intel).

1 - system bus controller; 2 - instruction fetch unit; 3, 4 - instruction decoder
for simple instructions; 5 - instruction decoder for complex instructions; 6 -
register allocation unit; 7 - instruction retirement; 8 - microinstructions
reordering buffer; 9 - microinstructions scheduler; 10, 11 - floating point
operation units; 12, 13 - integer operation units; 14 - memory access
controller; 15 - architecture registers; 16 - conventional microprogram control
(controls everything that is too complex to be executed in parallel; 17- branch
target buffer; 18 - architecture instruction counter; 19 - memory access buffer.

The ReAl Computer Architecture IDAACS 2007 28

http://www.realcomputerarchitecture.com

The ReAl Computer Architecture

ReAl = Resource Algebra

What a current superscalar machine does implicitly and speculatively at a

comparatively small scale (for example, with 4 to 16 operation units), a

ReAl machine could do explicitly and in a deterministic way at a scale only

limited by semiconductor technology.

Conventional superscalar machines ReAl machines

• More than one operation unit
(e.g., 2 to 16)

• Complex pipelined circuitry
• Provides partial data flow operation by

speculation
• Complex hardware to detect inherent

parallelism between instructions
• Complex hardware to detect conflicts

and hazards during execution
• Rigid processor structures (the

application problem must match
sufficiently well, or there will be
inefficiencies)

• Conventional instruction set.
Downwardly compatible instruction set
architectures can be supported (cf. the
processors of the personal computers)

• More than one processing resource
• Each resource is a comparatively

less complex, non-pipelined
circuitry

• Provides partial data flow operation
based on a deterministic
description (c-operators),

• Inherent parallelism detected
during compile time; no dedicated
circuitry required

• The ensemble of resources could
be morphed to (virtual) application-
specific machines

• New instruction set architecture;
describing parallelism and dataflow
operation in detail

The ReAl Computer Architecture IDAACS 2007 29

http://www.realcomputerarchitecture.com

The ReAl Computer Architecture

ReAl = Resource Algebra

The superscalar processor shown above could be turned into a ReAl

machine. The operation units, the cache memories, the buffers as well as

the bus interfaces remain. The instruction decoder is significantly more

straightforward. The general-purpose register file could be extended

significantly (for example, up to 256 registers). The operation units could

be directly connected with the general-purpose registers. Since the

complex control circuitry is not needed, the set of operations could be

expanded or additional operation units could be provided.

The ReAl Computer Architecture IDAACS 2007 30

http://www.realcomputerarchitecture.com

The ReAl Computer Architecture

ReAl = Resource Algebra

A rough estimate:

Conventional high-performance processors consist of about 10 to 50

million transistors. An integrated circuit with 200 million transistors can

accomodate four superscalar processor cores, each comprising

approximately 50 million transistors. However, the performance capability

of this arrangement can become effective only when at least four programs

are to be executed at the same time; the individual program cannot be

accelerated in itself. The operation units of one of the processor cores

correspond roughly to eight 64-bit arithmetic/logic units (the differences

between integer and floating point units etc. being neglected here). These

4 cores • 8 operation units correspond to 32 resources. The instruction

fetch and execution control hardware is to be replaced by ReAl platform

circuitry. Cache memories, control circuits, bus systems etc. are maintained

(same size, but modified structure). Some more resources could be located

on the silicon area otherwise occupied by auxiliary and control circuitry

(pipelining, detection of hazards and the like). Therefore, one can

reasonably expect a processor IC containing approximately 48 to 64 high-

performance processing resources. According to the requirements of the

applications to be executed, this ensemble of resources could be morphed

into graphic engines, database engines etc. under control of ReAl

operators.

The ReAl Computer Architecture IDAACS 2007 31

http://www.realcomputerarchitecture.com

The ReAl Computer Architecture

ReAl = Resource Algebra

Optimization of high-performance processors vs. ReAl

Some activities to develop optimized high-performance processors

correspond to important goals of the ReAl approach.

Recommendations to improve
computational throughput in
conventional processors*

Within ReAl machines, these
recommendations will be more than
fulfilled . . .

• Reduce the amount of load/store
cycles (more than 30% of the
instructions executed in a RISC
architecture are load and store
instructions)

• Streamline repetitive operations
(perform time-critical operations on
multiple data simultaneously)

• Maximize utilization of pipeline
resources

• Minimize branch latency

• If resources can be set up according to
the data flow, no load/store cycles will
be needed at all. Even the instruction
fetch cycles are avoided, as the control
codes have been loaded into the
resources.

• This will pose no problem if enough
processing resources are available

• Since the processing resources are
not part of a rigid hardware pipeline
but can be interconnected freely, some
utilization problems and hazards are
avoided which are typical of pipelined
hardware

• Can be achieved by appropriate
platform design. Even multiway
branches can be supported

*: according to Atmel.

The ReAl Computer Architecture IDAACS 2007 32

http://www.realcomputerarchitecture.com

The ReAl Computer Architecture

ReAl = Resource Algebra

An algorithm to calculate the sum of absolute differences (SAD). Left: The
original C-code (source: xvid codec). Right: an appropriate ReAl
configuration of processing resources.

This example has been used to illustrate optimization problems of

conventional processor architectures. Obviously, the SAD value could be

calculated within a loop. But, to gain some speed, this (innermost) loop has

been unrolled. 16 operand values are to be fetched and 32 operations have

to be executed. Each operation requires at least one instruction, which is

to be fetched, too. These operations can easily be mapped onto an

inverted tree of concatenated processing resources. Once the resource

configuration has been set up, there is no need to fetch more instructions,

as all control codes reside within the resources. Therefore, the memory

access paths and the total memory bandwith will be available for moving

the application data.

The ReAl Computer Architecture IDAACS 2007 33

http://www.realcomputerarchitecture.com

The ReAl Computer Architecture

ReAl = Resource Algebra

Multiprocessor systems vs. ReAl

Obviously, multiprocessor systems are advantageous if the application

problem matches the system structure. However, there are some basic

drawbacks which apply to all systems built of multiple independent

processors:

• Each processor needs its own instruction fetch mechanism, instruction

cache, instruction sequencer etc.

• The synchronization between processors is difficult, requiring special

hardware means (like test-and-set instructions and cache coherency

provisions) and causing overhead during runtime.

• If the particular processor is too small, and if the amount of non-

parallelizable code cannot be neglected, then Amdahl’s Law will be

effective.

• Some processors will be unused if the processor arrangement does

not match the structure or the size of the application problem (e.g., 16

processors but only 7 threads to be executed in parallel).

The ReAl Computer Architecture IDAACS 2007 34

http://www.realcomputerarchitecture.com

The ReAl Computer Architecture

ReAl = Resource Algebra

To a large extent, the ReAl approach has been stimulated by the desire to

circumvent these drawbacks. The key points can be summarized as

follows:

• To break down the complete processor into its functional units (in other

words: to provide less complex processing resources, but more of

them).

• To provide for sufficiently efficient, optimized interconnections.

• To develop principles of operation and instruction set architectures

which can cope with such hardware configurations.

Dedicated hardware vs. ReAl

Dedicated hardware systems are comparatively expensive. The

development task is complex. More recent approaches try to combine

hardware and software development more closely. But such systems on

silicon are still highly specialized systems. Their structure can be changed

only during development time. This is also true for highly flexible processor

structures.

The ReAl Computer Architecture IDAACS 2007 35

http://www.realcomputerarchitecture.com

The ReAl Computer Architecture

ReAl = Resource Algebra

In contrast, ReAl systems don't know a rigid division between general-

purpose processors and specialized circuitry. On a ReAl programmable

integrated circuit, application-specific machines can be created on the fly

by exploiting all of the resources according to the particular needs of the

application problem.

Conventional systems on silicon ReAl systems on silicon

• Hardware structure to be determined
during development time

• Hard IP cores cannot be modified
• If a hardware unit is to be laid out or

modified depending on the
application problem, it must be
implemented the soft way (with
programmable cells)

• The general-purpose processor can
only be modified, but not changed in
its basic instruction set architecture

• Hardware structure can be changed
during run time

• Typical ReAl resources are hard IP
cores of intermediate complexity
(considerably more than a macrocell,
but much smaller than a general-
purpose processor)

• If necessary, general-purpose
processing hardware can be created
on the fly according to the
requirements of the application

The ReAl Computer Architecture IDAACS 2007 36

http://www.realcomputerarchitecture.com

The ReAl Computer Architecture

ReAl = Resource Algebra

Call to Action:

• Implement emulators on industry standard computing platforms (PCs,

microcontrollers).

• Implement appropriate hardware solutions (based on state-of-the-art

FPGAs).

• Develop new FPGA architectures with embedded medium grain

resource cells.

• Modify state-of-the-art superscalar processors into ReAl hardware

platforms (caches, operation units und bus systems remain, instruction

decoder, register sets, instruction sequencing and microprograms are to

be modified).

• Develop true supercomputer architectures (neither vector processors nor

processor farms).

• Write appropriate compilers.

• Write top-notch applications which make use of the ReAl paradigm.

The ReAl Computer Architecture IDAACS 2007 37

http://www.realcomputerarchitecture.com

The ReAl Computer Architecture

ReAl = Resource Algebra

The next steps to be taken:

ReAl development will be a time-consuming process.

The first implementations will be emulators.

Toy-like implementations are worthless.

The first experimental ReAl architecture implementation should be a
reasonable compiler target.

Hence the complexity will be comparable to the architectures of
contemporary high-performance processors (for example, Intel IA-32 and
IA-64).

Numerous details have to be taken into consideration. (Contemporary
processors have 200 instructions and more.)

A set of basic resources has to be defined in detail.

The theory of operation has to be worked out and described in detail.

All the primary evaluation work has to be done manually, as we cannot
afford a number of iteration cycles (design a architecture – write a compiler
– evaluate the work based on real-world applications – improve the
architecture and so on).

The set of reference manuals will comprise more than 1000 pages.

Algorithms for converting conventional programs into ReAl operator
sequences have to be developed.

