A metrics of efficiency — excerpt from the article “Resources instead of Cores”, ACM Sigarch Computer
Architecture News, Vol. 38, No. 2, May 2010, pages 49 — 63 1

4. A metrics of efficiency

The philosophy behind the ReAl API emanates from the concept of efficiency of implementation. Each
processor, may it be general-purpose or highly specialized, may it consist of a singe core or be an
ensemble of many cores, is basically a sequential state machine. It should do useful work. The task
proper of a machine is not executing instructions but delivering output bit patterns according to the
current input bit patterns. When an application problem is to be solved, intermediate variables, procedure
calls and the like are essentially a waste of clock cycles or machine bandwidth (and, in consequence,
power). Obviously, it would be better to have the job being done (for example, the rendering of a
graphics presentation) than to push the EDX register onto the stack in order to get it free for
multiplication and later to fetch it back again (this is an example of an instruction sequence which
contributes nothing to solve the application problem, but is to be executed only to compensate for
architectural quirks). Hence the metrics of raw performance should not be instructions per second (the
ubiquitous MIPS), but effective application bits per second. To obtain an appropriate performance
metrics PM, a certain interval of n machine cycles (cycle time = tc) is to be observed (n could be the
number of machine cycles needed to execute a function or a complete application, for example). What
is to be counted is the number of data bits B; (operands and results) that have been moved over the data
paths of the machine. However, only these data transfers will be considered that contribute to the
solution of the application problem. Machines that waste bandwidth by fetching instructions and pushing
register contents around may boast with impressive MIPS ratings, but their PM rating will be
comparatively low.

1 n
PM=——%'B
ntZ '

“le =
The utmost performance will be achieved when the following conditions are satisfied:

1. Each data bit belonging to the application problem is to be moved through the machine not more
often but once.

2. In each machine cycle a partial result will be delivered.

3. The number of result bits delivered corresponds to the number of data lines (or processing
width/machine word length, respectively).

Whether or not a machine can be built fulfilling these conditions, depends ultimately on the algorithm
to be implemented. This property of the algorithm can be expressed by a characteristic value called
efficiency of implementation e;:

S CARDB(A,)+ > CARDB(R))
i=1 j=1

e =
'~ Z.(ARG_LINES + RES_LINES)

» CARDB(A;) and CARDB(R)) designate the number of bit positions of the arguments and results.

* ARG_LINES and RES_LINES designate the number of signal lines available to move the argument
and result data (processing width/machine word length). If there are fewer signal lines than bit
positions (with respect to the particular data structure), the number of bit positions applies.

» z designates the number of machine cycles required to generate the total result.

A metrics of efficiency — excerpt from the article “Resources instead of Cores”, ACM Sigarch Computer
Architecture News, Vol. 38, No. 2, May 2010, pages 49 — 63 2

Thus, the implementation efficiency is a dimensionless number in the interval betweenOand 1. Ife;=1
then the most appropriate implementation is indeed feasible. Then each machine cycle will contribute to
the final result by delivering partial results according to the number of available signal lines (or
processing width, respectively). This is possible only when each partial result can be computed by
combinational assignment from the argument words selected currently and, if necessary, by inclusion of
state data determined in previous machine cycles.

The implementation efficiency is < 1 if:

1. The combinational assignment cannot be implemented (a question of cost and complexity).

2. Some result bits depend on argument bits within different argument words that require more than
one machine cycle to be fetched.

3. Some argument values cause modifications of partial results already computed (that requires to fetch
these result values again).

A situation according to the first condition is not always an insurmountable obstacle — it is ultimately a
matter of discretion, what is considered too expensive or too complicated. On the other hand, the second
and the third condition designates objective limits. Such algorithms can never be implemented with g, =
1 (not even when cost does not matter). A plausible example is reordering of bits in a larger bit field
(e.g., of pixels in a frame buffer) according to an index vector. Each argument bit is principally to be
moved to any result bit position. In consequence, it may be necessary to fetch again partial results in
order to insert new values. With regard to speed, the most desirable way to execute an algorithm is the
immediate assignment. Obviously, this is not feasible for complex algorithms. Hence processing has to
be done in steps (machine cycles). In each machine cycle, the number of bits to be processed depends
on the width of the data paths. The determination of the number of data lines is a design decision. It
depends on given goals of performance and limits of cost. For the most efficient algorithms (with regard
to e;), the number of signal transitions will not depend on the number of signal lines. E.g., when 64 bits
are to be processed, there will be always 64 signal transitions, occurring simultaneously or consecutively
according to the number of signal lines.

Efficiency of implementation and power consumption. It has been found that this metrics can be used to
evaluate efficiency problems of power consumption, too. Today the primary problem is not transistor
count, but saving power. According to a strict power saving philosophy, the universal computer is to be
considered only a makeshift solution. With respect to an application problem, the true optimum solution
would be a dedicated machine whose cycles are spent exclusively to compute the desired final results.
In such a machine, neither clock cycles and memory bandwidth nor power would be wasted for fetching
instructions, loading and storing intermediate values, calling functions and the like. ReAl machines
should be true universal machines whose characteristics come as close to this ideal as possible. It is an
old rule of thumbs that 30% of all memory access cycles in a conventional processor are used fetching
instructions. As a rough estimate, 30% of all signal transitions could be related to the machine
instructions (fetching, decoding, sequencing and the like). Consequently, a machine in which none of
these activities takes place would draw 30% less power. This saving is related to full-speed operation (in
contrast to the current practice of switching off idle functional units). There are two basic architectures
without conventional machine instructions: the dataflow machine and the purely application-specific
machine or accelerator. The ReAl API can be considered an approximation: conventional programs can
be morphed partially into dataflow graphs, and resources can be interconnected to behave like
application-specific machines.

